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Abstract

Two third order methods for finding multiple zeros of nonlinear functions are developed. One method is based on
Chebyshev’s third order scheme (for simple roots) and the other is a family based on a variant of Chebyshev’s which does
not require the second derivative. Two other more efficient methods of lower order are also given. These last two methods
are variants of Chebyshev’s and Osada’s schemes. The informational efficiency of the methods is discussed. All these meth-
ods require the knowledge of the multiplicity.
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1. Introduction

There is a vast literature on the solution of nonlinear equations and nonlinear systems, see for example
Ostrowski [1], Traub [2], Neta [3] and references there. Here we develop several high order fixed point type
methods to approximate a multiple root. There are several methods for computing a zero ¢ of multiplicity
m of a nonlinear equation f(x) = 0, see Neta [3]. Newton’s method is only of first order unless it is modified
to gain the second order of convergence, see Rall [4] or Schréder [5]. This modification requires a knowledge of
the multiplicity. Traub [2] has suggested to use any method for /™ (x) or g(x) = f,((f()). Any such method will
require higher derivatives than the corresponding one for simple zeros. Also the first one of those methods
require the knowledge of the multiplicity 7. In such a case, there are several other methods developed by Han-
sen and Patrick [6], Victory and Neta [7], Dong [8,9], Neta and Johnson [10], Neta [11] and Werner [12]. Since
in general one does not know the multiplicity, Traub [2] suggested a way to approximate it during the
iteration.

For example, the quadratically convergent modified Newton’s method is (see [5])

7
I

and the cubically convergent Halley’s method [13] is a special case of the Hansen and Patrick’s method [6]

()

Xpt1l = Xp —
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where £V is short for £ (x,). Another third order method was developed by Victory and Neta [7] and based
on King’s fifth order method (for simple roots) [14]

Yy = Xn — Uy,

xyy =y, 100 St AT ) (3)
T LB
where
A= 'u2m _ 'um+l’
"(m—2)(m—1)+1
po =Dl @
(m—1)
m
-7 5
F=m -1 (5)
and
Jn
Dong [8] has developed two third order methods requiring two evaluations of f and one evaluation of f7
yn =Xp — \/ﬁu’”
1-m ) (7)
Xn+1 :yn _m(l _ﬁ) f_(;;)7
yn = Xp — Uy,
— unf .O:n) (8)
n — Vn + T . w1
Xnt1 = Fom—(1-1) T

where u,, is given by (6).
Yet two other third order methods developed by Dong [9], both require the same information and both
based on a family of fourth order methods (for simple roots) due to Jarratt [15]:

Y = Xn — Uy,

—y A 9)
Xn+1 = z
n+1 VY (ﬁ) Hf‘,(yn)Jr”z,;Tzl;zlfri ’
Yn =Xn = mrilun’
. (10)
Tkl = = G
n o n n

where u,, is given by (6).
Osada [16] has developed a third order method using the second derivative,
2/

1 1
Xpr1 =%, —=m(m+ Du, +=(m—1) o

2 2

where u,, is given by (6).
Neta and Johnson [10] have developed a fourth order method requiring one function- and three derivative-
evaluation per step. The method is based on Jarratt’s method [17] given by the iteration

. £
afy +af'(v,) +asf'(n,)’

where u, is given by (6) and

(12)

Xn41 = Xp
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yn = X, — au,,
U :—ﬁ‘
AN

n, = x, — bu, — cv,.

(13)

Neta and Johnson [10] give a table of values for the parameters a, b, ¢, a;, a», az for several values of m. In
the case m = 2 they found a method that will require only two derivative-evaluations (a3 = 0). This was not
possible for higher m.

Neta [11] has developed a fourth order method requiring one function- and three derivative-evaluation per
step. The method is based on Murakami’s method [18] given by the iteration

Xpe1 = Xy — Ayt — 30, — azws3(x,) — Y(x,), (14)
where u, is given by (6), v,, y,, and 7, are given by (13) and
S

ws(x,) = )

) = )

Y (15)

Xp) = .

R N L

Neta [11] gives a table of values for the parameters a, b, ¢, a;, a», as, by, b, for several values of m.
A method of order 1.5 requiring two function- and one derivative-evaluation is given by Werner [12]. It is
only for double roots

Vy = Xp — Uy,

Xp+1 = Xp — Splly,

(16)
where

2 o1
s, = l+m f(yn /ﬁl X 1
%f /() otherwise.

Later we give a table comparing the efficiency of these methods and of our new ones we develop here.
2. A new third order scheme

We would like to develop a new method for multiple roots based on Chebyshev’s method (see [19-21]).
Chebyshev’s method is given for simple roots by

f//
Xn+l = Xp — Up |:1 +2Mnf,:| (17)
Let us take the following two-parameter family
f/l
Xppl = X, — Oy, [1 + Bu, f’] (18)

We now show how to choose the parameters o, f so that the method is of third order for the case of multiple
roots.

Expand f(x,), and f”(x,) in Taylor series (truncated after the Nth power, N > m) about the root £, we have
(using a symbolic manipulator Maple [22])

f(xn):f(xn—§+é):f(f+e”):f ) <m+ ZAe) (19)

i=m+1

or
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(m) (g N
Foo) =7 mfg)em<1 +3 B > (20)
. i=m+1
where
mlfO(&)
Ai =~ o\ ) > I
llf(m)(g) ! m (21)
Bifm - Al?
and
e, =x, — ¢, (22)
ol (m) é m— S l i—m
f(x,) = ({n —(I;Ie" ! (1 + .;1 %B,;men ) (23)

Then u, will be (neglecting terms of order higher than 3)

2 p—
u, = len - B—lzei + (m + 1)813 2mB, e (24)
m m
Now expand the second derivative and get un’%
S oy mt] (m+Dm+2), 5 (m+2)(m+3), ,
" =" 1 B B B 2
" (%) (m72)!e” +m7 1 1€n m(m — 1) 26, + m(m — 1) n ) (25)
1 _ 2 _
u,,f—”: m—1 -1—3816,, 3 3(m + 1)B; Zmlee
S m m? m3
L (m+3)(m+ 1)’B} — (3m + 4)(:71 + 3)mB,B; + 3m*(m + 3)Bs o 26)
m
Now substitute (24) and (26) in (18)
v = —om + m? —i—zocﬁ(l —m) ot oB((m — 3)/3 +m) eﬁ
m m-
_ 2 _ _
N 2oc(m—|—ﬂ§m 4))B2_fx(m(m—|— 1)+[3§m 3m 6))Bf o (27)
m m
If we choose (m # 3)
_ m(m—3)
2 (28)
B= T3’
we have the third order method
B m(m — 3) m fr
Xp1 = X, + 3 u, {1 — u”f: (29)
with the error at x,,; becomes
1 3+m
€l = (—mBZ + 2m2 B%>ei (30)

Clearly the case m = 3 need to be considered separately. In this case the method is only second order with the
choice

3—u

3
ﬁ_§ o

(31)
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and
33—a f)
Xptl = X, — OUy, |:1 + E O(un(f‘n’:| (32)
with the error at x,,; becomes
o o—1 9 —Tua
€nil :§Blei—|— ( 3 Bz+ 27 B%)ez (33)

We can annihilate one of the terms in the coefficient of ¢} by choosing o = 1 or « = 2, but the method is only
second order.

3. New methods not requiring second derivative
Here we develop 3 new methods not requiring second derivative. First is a third order method based on a

modification of Chebyshev’s method. The one-parameter family of modified Chebyshev methods (see Kou
and Li [23]) is given by

C+0-1 f(,)
Xntl = Xp — Uy |: 02 + 02 g :| ) (34)
where
¥V, = X, — Ou,,. (35)
Two special cases were discussed in [23]. The choice 0 = 1 yields the method
Mﬂxnzhp+f@””m} (36)
Jn
Another possibility is to choose 6 so that
0°+0-1=0
ie.
—1+£+5
g T1EVS (37)
2
In this case, the method is
2 f(x,— Ou,)
Xpil = X, — . 38
1 TR (38)
We now construct a family similar to (34) for the case of multiple roots. Let
Xnyl = Xp — Up |:ﬂ + VM:| y (39)
Ja
where
Yy = Xy — Olly. (40)
Using Maple [22] to get all the Taylor series necessary, we have (up to third order terms)
en1 = Cre, + &€ + e, (41)
where
_m=f—=yp
a=—>
m
42
_ g (m=2)(p+p) —yp 42)
Cy = D B )
m2(m — o)
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and
m—o\"
= . 43
P ( m ) (43)
Before we list ¢3, we choose f§ and y to annihilate the coefficients ¢; and ¢,
m(m — o
pom - ZH)
m(m — o) (44)
e
o

In this case, we have
m—o 1 m(m+3) —2a(m+ 1)

=———8B B2 45
“ m? 213 m?(m — o) ! (45)
We can choose the last parameter, o, to annihilate the coefficient of B2, i.e.
1 m(m—+3)
= — 46
* 2 m+1 (46)

The choice o = m is not possible. Using the value of o from (46) in (44), we have the following:

m? +4m* +9m + 2

B =

(m+37°
2m+l(m2 _ 1) (47)
A — T
2
(m+3) (m—ﬁ)
B l m—1 3
Gl =7y m(m+ 1) 2

The one parameter family (39), (40), and (44) is third order requiring two function- and one derivative-eval-
uation per step.

The second new method is based on the approximation given by Neta [24] for the second derivative in (29),
ie.

w6 2, 4,
fn - hz (/Infl fn) + hfn—l + hfw (48)
where & = x, — x,,_1. This will give the following method:
B m(m — 3) m
Xn+1 = Xp + 2 Uy |:1 - I 3 unw(xn)i| ) (49>
where
6(fo1 — fu) + 20 +4hf
wiey) = Vot ZJ) T2, AR, (50)

nf!
This modified method is of order 2.732 for m # 3 and it requires one function- and one derivative-evaluation
per step. It also requires an additional starting value which we can be obtained using Newton’s method (first

derivative is required anyway).
The third new method is based on the approximation (48) for the second derivative in (11), i.e.

m(m + 1) (m— 1)
et 2w(x,)
where w(x,) is given by (50). This modified method is also of order 2.732 and it requires one function- and one

derivative-evaluation per step. It also requires an additional starting value which we can be obtained using
Newton’s method (first derivative is required anyway).

(51)

Xnyl = Xp —

Please cite this article in press as: B. Neta, New third order nonlinear solvers for multiple roots, Appl. Math. Comput.
(2008), doi:10.1016/j.amc.2008.01.031




44

45
46
47

49

B. Netal Applied Mathematics and Computation xxx (2008) xxx—xxx 7

Table 1
Comparison of methods for multiple roots
Algorithm V4 d E 1 f fn "
Werner [12] (16) m =2 1.5 3 0.5 1.145 1
Schroder [5] (1) 2 2 1 1.414 1
Hansen and Patrick [6] 3 3 1 1.442 1 1
Halley (2) 3 3 1 1.442 1 1
Laguerre 3 3 1 1.442 1 1
Hansen and Patrick [6] 3 4 0.75 1.316 1 1 1
Victory and Neta [7] (3) 3 3 1 1.442 1
Dong [8] (7), (8) 3 3 1 1.442 1
Dong [9] (9), (10) 3 3 1 1.442 2
Osada [16] 3 3 1 1.442 1 1
Neta and Johnson [10] (12) m # 2 4 4 1 1.414 3
Neta and Johnson [10] (12) m = 2 4 3 1.333 1.587 2
Neta [11] 4 4 1 1.414 1 3
Neta (29) m # 3 3 3 1 1.442 1 1
Neta (32) m =3 2 3 0.667 1.259 1 1
Neta (39) 3 3 1 1.442 1
Neta (49) 2.732 2 1.366 1.653 1
Neta (51) 2.732 2 1.366 1.653 1
We now give the definitions of informational efficiency (see Traub [2])

E=p/d (52)
and efficiency index

I=p" (53)

where p is the order of the method and d is the number of function (and derivatives) evaluations per step.
Clearly it is assumed that the cost of evaluating a function or any of the derivatives required is identical.
In Table 1 we list all methods known (to the author) for finding roots with multiplicity m. It can be seen that
the informational efficiency is almost always unity. The efficiency index for our methods here is the highest for
a general m. Of the two third order methods developed here, we prefer the second which has the same effi-
ciency independent of the multiplicity. These two schemes are still preferable over the fourth order methods
given by Neta and Johnson [10] and Neta [11] because we have a closed form formula for the parameters. The
last two methods are of order lower than three but of higher efficiency.

4. Numerical experiments

In this section we report on numerical experiments using Halley’s method (2), Chebyshev’s method (29), the
modified Chebyshev method (39) (with « = m/2) all for multiple roots, the modified method (49) and the mod-
ified Osada scheme (51). In our first example we took a quadratic polynomial having a double roots at & = 1

flx)=x*—2x+1. (54)
Here we started with xo = 0 and the convergence achieved in 1 iteration for the first 3 methods and 2 iterations
for the last two schemes. In the second example we took a polynomial having two double roots at & = +1

fx) =x =27+ 1. (55)

Starting at xo = 0.8 Halley’s and Chebyshev’s methods converged in 4 iterations but the modified Chebyshev
required 3 iterations. The last two modified schemes required 5 iterations. When we start at xo = 0.6 all the
methods required the same number of iterations as before. The results are given in Table 2, where we used
a(—b) to denote a x 107°. Note that the modified Chebyshev was consistently better than the first two
schemes. The last two schemes are slower since their order is less than three.
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Table 2
Comparison of 5 methods for 4 different initial guesses for Example 2
X0 Method

(2 (29) (39) (49) (51)

n f (o) n Lf (o)l n | () n Lf (x| n f ()l
0.8 4 0 4 0 3 0 5 0 5 0
0.6 4 6(—15) 4 5.8(—15) 3 2(—20) 5 0 5 0
Note that a(—b) means a x 107°.
Table 3
Results for Example 3
Method n |f x|
(2) 3 1(—18)
(32) 3 1(—15)
(39) 3 0
(49) 7 1(—14)
(51) 9 0

Note that a(—b) means a x 107°.
The next example is a polynomial with triple root at £ = 1. Recall that Chebyshev’s method for m = 3 has a
free parameter «. In this example we used o = 3/2
f(x) =x° — 8x* 4+ 24x* — 34x” + 23x — 6. (56)

The iteration starts with xy = 0 and the results are summarized in Table 3.
Another example with double root at £ =0 is

f(x) = x%¢". (57)

Starting at xo = 0.1 or at x, = 0.2 the first three methods converged in 2 iterations and the last two required 4—
5 iterations. The results are given in Table 4.

Table 4
Results for Example 4
Method xo = 0.1 x0=0.2

n 1f ()] n If Gen)|
(2) 2 4(—-26) 2 8(—21)
(29) 2 2(—-22) 2 3(-17)
(39) 2 2(-22) 2 3(—17)
(49) 4 3(—195) 5 5(—26)
(51) 4 1(—14) 5 1(—24)
Note that a(—b) means a x 107°.
Table 5
Results for Example 5
Method x0=0 xo=0.5

n 1 G| n |/ G|
(2) 3 1(—18) 3 0
(29) 5 0 3 0
(39) 4 1(—18) 3 0
(49) 5 0 5 1(—18)
(51) 5 2(—18) 5 1(—18)

Note that a(—b) means a x 107°.
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The last example having a double root at £ =1 is
f(x) =3x* +8x* — 6x* — 24x + 19. (58)

Now we started with xy = 0 and xy = 0.5 and the results are summarized is Table 5. Again the last two schemes
are slower to converge.

5. Conclusions

We have developed four new methods to obtain multiple roots. The first scheme is third order and it
requires a special care in the case that the root is triple. The second family does not require the use of the sec-
ond derivative. Instead we have another function evaluation at an off-step. The other two methods of order
2.732 are more efficient. The numerical experiments show the rapid convergence of the third order methods
with a slight edge to (39). The last two methods require slightly more iterations but less function evaluations
per step.
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